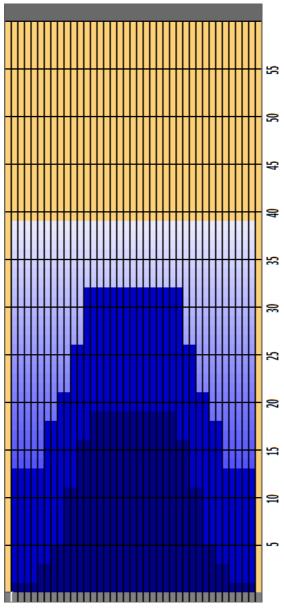


FLEX 2017 PEPSI STATE QUALIFY-MIDDLE OF THE RD



Oil Pattern Distance Oil Per Board 39 **Reverse Brush Drop** 39 50 ul **Forward Oil Total Reverse Oil Total** Volume Oil Total 22.85 mL 11.9 mL 10.95 mL **Tank Configuration** A-B **Tank A Conditioner FIRE Tank B Conditioner ICE**

START STOP	LOADS	SPEED	CROSSED	START	END	FEET	T.OIL
2L 2R	2	14	74	0.0	1.9	1.9	3700
6L 6R	1	14	29	1.9	3.8	1.9	1450
8L 8R	1	14	25	3.8	5.7	1.9	1250
10L 10R	3	14	63	5.7	11.6	5.9	3150
12L 12R	2	18	34	11.6	16.7	5.1	1700
14L 14R	1	18	13	16.7	19.2	2.5	650
2L 2R	0	18	0	19.2	26.0	6.8	0
2L 2R	0	22	0	26.0	32.0	6.0	0
2L 2R	0	30	0	32.0	39.0	7.0	0

START STOP LOADS SPEED CROSSED START END FEET T.OIL 1 2L 2R 0 30 0 39.0 32.0 -7.0 0 2 13L 13R 2 22 30 32.0 25.8 -6.2 1500 3 11L 11R 2 18 28 20.7 15.1 1900 4 9R 1 18 23 20.7 18.2 -2.5 1150 5 7R 2 18 54 18.2 13.1 -5.1 2700 6 2L 2R 2 18 74 13.1 8.0 -5.1 3700 7 2L 2R 0 14 0 8.0 0.0 -8.0 0	1 2L 2R 0 30 0 39.0 32.0 -7.0 0 2 13L 13R 2 22 30 32.0 25.8 -6.2 1500 3 11L 11R 2 18 38 25.8 20.7 -5.1 1900 4 9L 9R 1 18 23 20.7 18.2 -2.5 1150 5 7L 7R 2 18 54 18.2 13.1 -5.1 2700 6 2L 2R 2 18 74 13.1 8.0 -5.1 3700										
2 13L 13R 2 22 30 32.0 25.8 -6.2 1500 3 11L 11R 2 18 38 25.8 20.7 -5.1 1900 4 9L 9R 1 18 23 20.7 18.2 -2.5 1150 5 7L 7R 2 18 54 18.2 13.1 -5.1 2700 6 2L 2R 2 18 74 13.1 8.0 -5.1 3700	2 13L 13R 2 22 30 32.0 25.8 -6.2 1500 3 11L 11R 2 18 38 25.8 20.7 -5.1 1900 4 9L 9R 1 18 23 20.7 18.2 -2.5 1150 5 7L 7R 2 18 54 18.2 13.1 -5.1 2700 6 2L 2R 2 18 74 13.1 8.0 -5.1 3700		START	STOP	LOADS	SPEED	CROSSED	START	END	FEET	T.OIL
3 11L 11R 2 18 38 25.8 20.7 -5.1 1900 4 9L 9R 1 18 23 20.7 18.2 -2.5 1150 5 7L 7R 2 18 54 18.2 13.1 -5.1 2700 6 2L 2R 2 18 74 13.1 8.0 -5.1 3700	3 11L 11R 2 18 38 25.8 20.7 -5.1 1900 4 9L 9R 1 18 23 20.7 18.2 -2.5 1150 5 7L 7R 2 18 54 18.2 13.1 -5.1 2700 6 2L 2R 2 18 74 13.1 8.0 -5.1 3700	1	2L	2R	0	30	0	39.0	32.0	-7.0	0
4 9L 9R 1 18 23 20.7 18.2 -2.5 1150 5 7L 7R 2 18 54 18.2 13.1 -5.1 2700 6 2L 2R 2 18 74 13.1 8.0 -5.1 3700	4 9L 9R 1 18 23 20.7 18.2 -2.5 1150 5 7L 7R 2 18 54 18.2 13.1 -5.1 2700 6 2L 2R 2 18 74 13.1 8.0 -5.1 3700	2	13L	13R	2	22	30	32.0	25.8	-6.2	1500
5 7L 7R 2 18 54 18.2 13.1 -5.1 2700 6 2L 2R 2 18 74 13.1 8.0 -5.1 3700	5 7L 7R 2 18 54 18.2 13.1 -5.1 2700 6 2L 2R 2 18 74 13.1 8.0 -5.1 3700	3	11L	11R	2	18	38	25.8	20.7	-5.1	1900
6 2L 2R 2 18 74 13.1 8.0 -5.1 3700	6 2L 2R 2 18 74 13.1 8.0 -5.1 3700	4	9L	9R	1	18	23	20.7	18.2	-2.5	1150
•		5	7L	7R	2	18	54	18.2	13.1	-5.1	2700
7 2L 2R 0 14 0 8.0 0.0 -8.0 0	7 2L 2R 0 14 0 8.0 0.0 -8.0 0	6	2L	2R	2	18	74	13.1	8.0	-5.1	3700
		7	2L	2R	0	14	0	8.0	0.0	-8.0	0

Cleaner Ratio Main Mix NA Cleaner Ratio Back End Mix NA NA Cleaner Ratio Back End Distance Buffer RPM: 4 = 720 | 3 = 500 | 2 = 200 | 1 = 50 This Pattern Up Loaded From Slot # 8 In Lane Machine On 9/10/2013 11:36 AM

Item	3L-7L:18L-18R	8L-12L:18L-18R	13L-17L:18L-18R	18L-18R:17R-13R	18L-18R:12R-8R	18L-18R:7R-3R
Description	Outside Track:Middle	Middle Track:Middle	Inside Track:Middle	MIddle: Inside Track	Middle:Middle Track	Middle:Outside Track
Frack Zone Ratio	3.96	1.61	1.01	1.01	1.61	3,96
1500 1350	3 4 5 6 7 8 9	10 11 12 13 14 15	16 17 18 19 20 19	18 17 16 15 14 13 12	11 10 9 8 7 6	5 4 3 2 1